1 In a chemical process, the mass M grams of a chemical at time t minutes is modelled by the differential equation

$$
\frac{\mathrm{d} M}{\mathrm{~d} t}=\frac{M}{t\left(1+t^{2}\right)^{2}} .
$$

(i) Find $\int \frac{t}{1+t^{2}} \mathrm{~d}$.
(ii) Find constants A, B and C such that

$$
\begin{equation*}
\frac{1}{t\left(1+t^{2}\right)}=\frac{A}{t}+\frac{B t+C}{1+t^{2}} \tag{5}
\end{equation*}
$$

(iii) Use integration, together with your results in parts (i) and (ii), to show that

$$
M=\frac{K t}{\sqrt{1+t^{2}}},
$$

where K is a constant.
(iv) When $t=1, M=25$. Calculate K.

What is the mass of the chemical in the long term?

2 The growth of a tree is modelled by the differential equation

$$
10 \frac{\mathrm{~d} h}{\mathrm{~d} t}=20-h,
$$

where h is its height in metres and the time t is in years. It is assumed that the tree is grown from seed, so that $h=0$ when $t=0$.
(i) Write down the value of h for which $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$, and interpret this in terms of the growth of the tree. [1]
(ii) Verify that $h=20\left(1-\mathrm{e}^{-0.1 t}\right)$ satisfies this differential equation and its initial condition.

The alternative differential equation

$$
200 \frac{\mathrm{~d} h}{\mathrm{~d} t}=400-h^{2}
$$

is proposed to model the growth of the tree. As before, $h=0$ when $t=0$.
(iii) Using partial fractions, show by integration that the solution to the alternative differential equation is

$$
h=\frac{20\left(1-\mathrm{e}^{-0.2 t}\right)}{1+\mathrm{e}^{-0.2 t}} .
$$

(iv) What does this solution indicate about the long-term height of the tree?
(v) After a year, the tree has grown to a height of 2 m . Which model fits this information better?

Fig. 9
Fig. 9 shows a hemispherical bowl, of radius 10 cm , filled with water to a depth of $x \mathrm{~cm}$. It can be shown that the volume of water, $V \mathrm{~cm}^{3}$, is given by

$$
V=\pi\left(10 x^{2}-\frac{1}{3} x^{3}\right)
$$

Water is poured into a leaking hemispherical bowl of radius 10 cm . Initially, the bowl is empty. After t seconds, the volume of water is changing at a rate, in $\mathrm{cm}^{3} \mathrm{~s}^{-1}$, given by the equation

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=k(20-x)
$$

where k is a constant.
(i) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$, and hence show that $\pi x \frac{\mathrm{~d} x}{\mathrm{~d} t}=k$.
(ii) Solve this differential equation, and hence show that the bowl fills completely after T seconds, where

$$
T=\frac{50 \pi}{k} .
$$

Once the bowl is full, the supply of water to the bowl is switched off, and water then leaks out at a rate of $\mathrm{kxcm}^{3} \mathrm{~s}^{-1}$.
(iii) Show that, t seconds later, $\pi(20-x) \frac{\mathrm{d} x}{\mathrm{~d} t}=-k$.
(iv) Solve this differential equation.

Hence show that the bowl empties in $3 T$ seconds.

4 A particle is moving vertically downwards in a liquid. Initially its velocity is zero, and after t seconds it is $v \mathrm{~m} \mathrm{~s}^{-1}$. Its terminal (long-term) velocity is $5 \mathrm{~m} \mathrm{~s}^{-1}$.

A model of the particle's motion is proposed. In this model, $v=5\left(1-\mathrm{e}^{-2 t}\right)$.
(i) Show that this equation is consistent with the initial and terminal velocities. Calculate the velocity after 0.5 seconds as given by this model.
(ii) Verify that v satisfies the differential equation $\frac{\mathrm{d} v}{\mathrm{~d} t}=10-2 v$.

In a second model, v satisfies the differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=10-0.4 v^{2}
$$

As before, when $t=0, v=0$.
(iii) Show that this differential equation may be written as

$$
\frac{10}{(5-v)(5+v)} \frac{\mathrm{d} v}{\mathrm{~d} t}=4
$$

Using partial fractions, solve this differential equation to show that

$$
\begin{equation*}
t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right) \tag{8}
\end{equation*}
$$

This can be re-arranged to give $v=\frac{5\left(1-\mathrm{e}^{-4 t}\right)}{1+\mathrm{e}^{-4 t}}$. [You are not required to show this result.]
(iv) Verify that this model also gives a terminal velocity of $5 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the velocity after 0.5 seconds as given by this model.
The velocity of the particle after 0.5 seconds is measured as $3 \mathrm{~m} \mathrm{~s}^{-1}$.
(v) Which of the two models fits the data better?

